Final Exam study guide
Note: For earlier material, see midterm study guides.
4.2 - Projections + planes

- Dot product: definition and basic properties
- $\vec{v} \cdot \vec{w}=0 \Longleftrightarrow \vec{v}, \vec{w}$ are orthogonal
- Projection-you should know the formula for this

- planes: formula its meaning
- cross product: know how to calculate this + its geometric significance.
- calculate distances:
- point to plane
- plane to plane
- line to line (parallel vs. not)
- plane to parallel line
$\underbrace{5.1-S u b s p a c e s ~ o f ~} \mathbb{R}^{n}$
- Definition, how to check if something is a subspace
- nullspace/image space definitions
- eigenspace
- spanning set
- subspaces of $\mathbb{R}^{2}, \mathbb{R}^{3}$?
5.2 - Linear independence + dimension
- Definition of linear independence
- $\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\}$ lin. indep \Rightarrow Each vector in $\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\}$ can be uniquely written as a linear combination of the \vec{x}_{i}.
- How to check for linear independence.
- Def of a basis / dimension
- $n \times n$ matrix invertible \Leftrightarrow cols form a basis for \mathbb{R}^{n} \Leftrightarrow rows form basis for \mathbb{R}^{n}
- Any lin. indep. Set of vectors can be enlarged to a basis for a subspace U.
- Any spanning set of U can be cut down to a basis.
- If U is contained in V, $\operatorname{dim} U \leq \operatorname{dim} V \quad(=$ if $U=V)$.
- How to find dimension/basis for a subspace.
5.3 - Dot product, length, distance, or tho gonality
- length, dot product, distance definition + properties.
- Cauchy inequality, triangle inequality
- orthogonal sets
- every orthogonal set is lin. independent
- orthonormal sets
5.4-Rank of a matrix
- column space / row space definitions
- row operations don't affect $\operatorname{cow}(A)$
- how to find basis for $\operatorname{row}(A) / \operatorname{col}(A)$
o dim of row/col space $=\operatorname{rank}(A)$
- $\operatorname{col}(A)=\operatorname{im}(A)$
o $\operatorname{dim}(\operatorname{null}(A))=(H$ of cols $)-\operatorname{rank}(A)$
5.5-Similarity/diagonalization
- def of $A \sim B$
- similar matrices have same: deft, trace, rank, etc.
- Eigenspaces: basis consists of basic eigenvalues.
- A diagonalizable $\Longleftrightarrow \mathbb{R}^{n}$ has a basis consisting of eigenvectors of A
\Leftrightarrow For each $\lambda, \operatorname{dim} E_{\lambda}(A)=$ mult (λ).
6.1 -Abstract vector spaces
- definition
- some examples: polynomials, matrices, real-valued functions

